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The sensitivity of the three-dimensional secondary instability of a circular-cylinder
wake to a structural perturbation of the associated linear equations is investigated.
In particular, for a given flow condition, the region of maximum coupling between
the velocity components is localized by using the most unstable Floquet mode and
its adjoint mode. The variation of this region in time is also found by considering
a structural perturbation which is impulsively applied in time at a given phase of
the vortex-shedding process. The analysis is carried out for both mode A and mode
B types of transition in the wake of a circular cylinder using a finite-difference code.
The resulting regions identified as the core of the instability are in full agreement with
the results reported in the literature and with the a posteriori checks documented here.

1. Introduction
The secondary instability in the wake of a circular cylinder has been widely

investigated in the literature using both experiments and numerical simulations (see
for instance Barkley & Henderson 1996 and Williamson 1996b for a review). Among
the different approaches used to study the transition process, linear stability analysis
plays a fundamental role since it can provide a great deal of insights into the instability
mechanism. The first global three-dimensional stability analysis of the periodic wake
behind a circular cylinder was performed by Noack, König & Eckelmann (1993) and
Noack & Eckelmann (1994) who used a Galerkin projection method to represent both
the base flow and the perturbation. Despite the reduced number of retained ad hoc
basis functions, they were able to capture the main features of the transition process
observed in the experimental investigations. Successively, Barkley & Henderson (1996)
performed a highly accurate Floquet stability analysis using a spectral element method.
They predict that at a Reynolds number (based on the cylinder diameter and on
the free-stream velocity) Re � 189, the two-dimensional von Kármán street becomes
linearly unstable to three-dimensional perturbations. The Floquet analysis shows the
existence of two separate bands of synchronous unstable modes: the first one (mode
A) appears for Re > 189 and is characterized by a spanwise wavelength of about
4 cylinder diameters, whereas the second one (mode B) develops for Re > 259 and has
a shorter spanwise wavelength (about 1 diameter). The results of the linear stability
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analysis are consistent with the experimental flow visualizations of Williamson (1988)
and with other direct numerical simulations documented in the literature (see for
example Karniadakis & Triantafyllou 1992; Mittal & Balachandar 1995 and Zhang,
Fey & Noack 1995). In a real flow, the transition for mode B occurs at a lower
Reynolds number (see Williamson 1988) than that predicted by a linear analysis,
because the development of mode A substantially alters the assumed two-dimensional
base flow. As a result, at Re ≈ 230–240, the wake already shows the evidence of both
modes and of their nonlinear interactions.

Different interpretations (see for instance Thompson, Leweke & Williamson 2001)
have been given in order to explain the physical nature of the secondary instability
of the cylinder wake, which is not completely understood yet. Independently of the
physical origin of this transition, Barkley (2005) has recently shown that ‘small
regions of the full flow just behind the cylinder are responsible for the linear
instabilities despite the fact that the actual linear modes extend many cylinder
diameters downstream the cylinder’. This observation has two implications. First of all,
this is important information that might be used in formulating an interpretation of
the physical nature of the secondary instability in the cylinder wake. Secondly, shorter
computational domains can be used for the linear stability analysis leading to reduced
computational costs. A similar behaviour was also observed for the first instability of
the cylinder wake by Giannetti & Luchini (2007). In the context of a genuine two-
dimensional analysis, introducing a concept similar to that of ‘wavemaker’ used in the
asymptotic theory of global modes (see for example Chomaz 2005), they determined
where in space a localized structural perturbation of the linearized Navier–Stokes
operator produces the largest drift of the unstable eigenvalue. In such a way, by
inspecting the spatial characteristics of the product between the associated direct and
the adjoint eigenfunctions, they were able to locate the core of the global instability
which gives rise to the Kármán vortex street; the analysis reveals that the ‘wavemaker’
(i.e. the core of the instability) is localized in the rear part of the separation bubble.

In the present work, the approach adopted by Giannetti & Luchini (2007) for
localizing the core of the vortex-shedding instability is generalized to the case in which
the base flow is time-periodic. In particular, the sensitivity of the Floquet exponent
to a generic structural perturbation of the linearized equations is carried out by
evaluating both the direct and the adjoint eigenfunctions of the Floquet transition
operator. When a time-constant localized structural perturbation is considered, a
spatial sensitivity map is built in order to identify precisely the region of the flow
where the instability arises. The dependence of the sensitivity map on the phase of
the vortex shedding is also found by considering a structural perturbation which is
impulsively applied in time at a given phase of the vortex-shedding process. The
resulting theory is finally applied in order to identify the core of the linear three-
dimensional instability in the wake of a circular cylinder in the two types of linear
transition, modes A and B. As shown in the paper, the sensitivity maps found are
in full agreement with what was observed heuristically by Barkley (2005), and show
that the instability is highly localized.

2. Problem formulation
The flow around an infinitely long circular cylinder positioned with its axis

orthogonal to the incoming uniform flow is considered. The flow is described using
a Cartesian coordinate system, with the z axis coinciding with the cylinder axis and
the x axis aligned with the flow direction. The fluid motion can be described by
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the unsteady incompressible Navier–Stokes equations, which are made dimensionless
using the cylinder diameter D∗ as the characteristic length scale, the velocity of the
incoming uniform stream U ∗

∞ as the reference velocity and the (constant) fluid density
ρ∗:

∂U
∂t

+ U · ∇U = −∇P +
1

Re
ΔU, (2.1a)

∇ · U = 0, (2.1b)

where U is the velocity vector with components U = (U, V, W ), P is the reduced
pressure and Re =U ∗

∞D∗/ν∗ is the Reynolds number (ν∗ being the kinematic viscosity
of the fluid). As for the boundary conditions, no-slip and no-penetration conditions
are applied on the cylinder surface Γc, and the flow is assumed to asymptotically
approach the incoming uniform stream in the far field.

2.1. Floquet analysis

It is well known that at Re > Rec1 ≈ 47, a time-periodic vortex shedding develops
in the wake of the cylinder and the flow remains periodic and two-dimensional
(W =0) for Rec1 <Re <Rec2 ≈ 189. The linear stability analysis to three-dimensional
disturbances of the two-dimensional time-periodic base flow is carried out using
Floquet theory (Drazin 2002). This approach was used for the first time in the study
of the secondary instability of the cylinder wake by Noack et al. (1993). Following
the classical approach, the total flow field Q = {U, P } is decomposed into the sum of
a two-dimensional time-periodic base flow (Ub,Pb) of period T , which is a solution
of the two-dimensional case (x–y plane) of the Navier–Stokes equations (2.1), and a
small unsteady perturbation:

U(x, y, z, t) = Ub(x, y, t) + ε
1√
2π

∫ ∞

−∞
u(x, y, k, t) exp(ikz) dk, (2.2a)

P (x, y, z, t) = Pb(x, y, t) + ε
1√
2π

∫ ∞

−∞
p(x, y, k, t) exp(ikz) dk, (2.2b)

where ε is the disturbance amplitude, and u and p are the Fourier-transformed
velocity and pressure disturbances in the spanwise direction, which is a homogeneous
direction for the base flow. Introducing (2.2) in (2.1) and linearizing in ε, we obtain
two problems describing the evolution of the two-dimensional periodic base flow
and the dynamics of the three-dimensional perturbations. In particular, the base flow
is governed by the two-dimensional version of (2.1), whereas the perturbed field
is described by the three-dimensional unsteady linearized Navier–Stokes equations
(LNSEs). When the Fourier transform in the z direction is applied to the LNSEs, the
following set of equations is obtained for each wavenumber k

∂u
∂t

+ Lk{Ub, Re}u + ∇kp = 0, (2.3a)

∇k · u = 0, (2.3b)

where ∇k ≡ ((∂/∂x), (∂/∂x), (ik)) is the Fourier-transformed gradient operator, Lk

stands for the Fourier-transformed linearized Navier–Stokes operator:

Lk{Ub, Re}u = Ub · ∇ku + u · ∇kUb − 1

Re
Δku (2.4)

and Δk ≡ ∇k · ∇k is the Fourier-transformed Laplacian operator. In the Floquet
stability analysis, the linearized flow field q = {u, p} is further assumed to have
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the following form

q(x, y, k, t) = q̂(x, y, k, t) exp (σ t), (2.5)

where σ is the Floquet exponent while q̂ = {û, p̂} is a non-trivial periodic field, with
the same period T as the base flow. Using (2.3), we easily verify that q̂ satisfies the
following set of equations

∂ û
∂t

+ σ û + Lk{Ub, Re}û + ∇kp̂ = 0, (2.6a)

∇k · û = 0. (2.6b)

These are supplemented with homogeneous boundary conditions on the cylinder
surface and appropriate far-field radiation conditions. This means that far enough
from the cylinder the perturbation behaves locally as an outgoing plane wave. While
this last requirement enforces the correct causality relation, it does not generally imply
that the disturbance vanishes at infinity. For the cylinder case, however, the spreading
of the wake with the resulting attenuation of the vorticity and the rapid decay of
the outer potential field produce a reduction of the perturbation amplitude with the
radial distance. Thus, in our case, the far-field conditions may be formulated as

q̂ = {û, p̂} → {0, 0} as r → ∞. (2.7)

The system of (2.6) along with the above boundary conditions and the periodicity
requirement for the solution represents an eigenvalue problem for σ . The Floquet
multipliers μ, which are the eigenvalues of the Floquet transition operator, are related
to the Floquet exponents σ by the expression μ = exp (σT ). By inspecting expression
(2.5), it is therefore easy to realize that the base flow becomes unstable whenever
there exists a Floquet multiplier μ > 1 or equivalently a Floquet exponent σ > 0.

2.2. Adjoint equations

In order to gain a better understanding of the secondary instability mechanism, we
will make use of the properties of adjoint operators. The adjoint of the LNSEs (2.3) is
defined using the generalized Lagrange identity (Ince 1926). For any pair of suitably
differentiable fields q ≡ {u, p} and g+ ≡ { f +, m+}, which do not necessarily have to
satisfy (2.3), the following Lagrange identity is constructed using differentiation by
parts [(

∂u
∂t

+ Lk{Ub, Re}u + ∇kp

)
· f + + (∇k · u) m̂+

]

+

[
u ·

(
∂ f +

∂t
+ L+

k {Ub, Re} f + + ∇km
+

)
+ p(∇k · f +)

]

=
∂u · f +

∂t
+ ∇k · J(q, g+), (2.8)

where J(q, g+) is the ‘bilinear concomitant’

J(q, g+) = Ub(u · f +) +
1

Re
(∇k f + · u − ∇ku · f +) + m+u + p f + (2.9)

and L+
k is the adjoint linearized Navier–Stokes operator

L+
k {Ub, Re} f + = Ub · ∇k f + − ∇kUb · f + +

1

Re
Δk f +. (2.10)
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Examining the second term in the square brackets on the left-hand side of the
Lagrange identity (2.8), we define the adjoint equations as

∂ f +

∂t
+ L+

k {Ub, Re} f + + ∇km
+ = 0, (2.11a)

∇k · f + = 0. (2.11b)

In this paper, we are interested in the Floquet adjoint modes; in particular, if
q(x, y, k, t) = q̂(x, y, k, t) exp(σ t) is the Floquet mode of the LNSEs corresponding to
the Floquet exponent σ , we define its adjoint as the solution of the adjoint LNSEs
(2.11) of the form g+(x, y, k, t) = ĝ+(x, y, k, t) exp(−σ t). Here ĝ+ = { f̂

+
, m̂+} is a

periodic field (with the same period T as the base flow) which satisfies the eigenvalue
problem defined by the following set of equations

∂ f̂
+

∂t
− σ f̂

+
+ L+

k {Ub, Re} f̂
+

+ ∇km̂
+ = 0, (2.12a)

∇k · f̂
+

= 0, (2.12b)

together with homogeneous boundary conditions on the cylinder surface and
appropriate radiation conditions in the far field. As for the direct mode, this does
not generally mean that the adjoint field has to vanish as the radial distance r → ∞.
However, in our case, the particular structure of the base flow leads to a rapid decay
of the adjoint mode, so that the far-field conditions become

ĝ+ = { f̂
+
, m̂+} → {0, 0} as r → ∞. (2.13)

The adjoint solution can be used to study the receptivity of the Floquet mode to
an external forcing. More precisely, the receptivity of the mode to a periodic forcing
in the momentum and/or continuity equation is proportional to the local magnitude

of the adjoint fields f̂
+

and m̂+.

3. Receptivity to spatially localized feedbacks
The stability and receptivity analysis of the two-dimensional periodic wake,

although it can provide useful information on the instability characteristics and
on the response of the forced system, is not able to locate the regions of the flow
where the secondary instability mechanism acts. For this reason, in this paper, we
generalize to time-periodic base flows the approach first introduced by Giannetti &
Luchini (2007) to study the first instability of the cylinder wake. In particular, using a
similar procedure, a structural stability analysis of the Floquet problem is carried out
in order to determine the region of the flow field in which the instability mechanism
arises; if this region is localized in space, we will denote it as the ‘core’ of the
instability.

Let us therefore consider the perturbed Floquet problem

∂ û′

∂t
+ σ ′û′ + Lk{Ub, Re}û′ + ∇kp̂

′ = δH(û′
, p̂′), (3.1a)

∇k · û′ = δR(û′
, p̂′), (3.1b)

in which δH and δR denote two generic linear differential operators expressing
the structural perturbation of the original differential problem. If the structural
perturbation is small, the solution q̂ ′(x, y, k, t) exp (σ ′t) of the perturbed problem
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(3.1) can be expanded in a neighbourhood of the solution q̂(x, y, k, t) exp (σ t) of the
unperturbed problem (δH(û′

, p̂′) = 0 and δR(û′
, p̂′) = 0). In particular, (i) taking

û′ = û + δû, (3.2)

p̂′ = p̂ + δp̂, (3.3)

where δû and δp̂ denote small corrections of the velocity and pressure fields,
respectively, due to the structural perturbation, (ii) expanding the perturbed Floquet
exponent σ ′ as

σ ′ = σ + δσ, (3.4)

(iii) inserting in (3.1) and (iv) neglecting quadratic terms, we obtain the following
differential problem for the Floquet exponent drift

∂δû
∂t

+ σδû + Lk{Ub, Re}δû + ∇kδp̂ = −δσ û + δH(û, p̂), (3.5a)

∇k · δû = δR(û, p̂). (3.5b)

Multiplying (3.5) by exp (σ t) and, in analogy with (2.5), defining δq(x, y, k, t) =
δq̂(x, y, k, t) exp (σ t), we can rewrite the previous equations as

∂δu
∂t

+ Lk{Ub, Re}δu + ∇kδp = −δσ u + δH(u, p), (3.6a)

∇k · δu = δR(u, p). (3.6b)

Applying the Lagrange identity (2.8) to the field δq and the adjoint Floquet mode
g+(x, y, k, t) = ĝ+(x, y, k, t) exp (−σ t) corresponding to the unperturbed eigenvalue
σ , integrating in time over the period T and in space over the whole flow domain D,
the following identity is obtained∫ t+T

t

∫
D

[(
∂δu
∂t

+ Lk{Ub, Re}δu + ∇kδp

)
· f + + (∇k · δu) m̂+

]
dS dt

+

∫ t+T

t

∫
D

[
δu ·

(
∂ f +

∂t
+ L+

k {Ub, Re} f + + ∇km
+

)
+ δp (∇k · f +)

]
dS dt

=

∫ t+T

t

∫
D

∂δu · f +

∂t
dS dt +

∫ t+T

t

∮
∂D

J(δq, g+) · n dl dt. (3.7)

Assuming that both the adjoint and the direct modes vanish in the far field and using
the periodicity in time of δû and f̂

+
, it is straightforward to verify that the right-hand

side of identity (3.7) is zero. Lastly, using the fact that the adjoint mode satisfies (2.12)
and using (3.5), the drift δσ of the Floquet exponent due to the structural perturbation
can be expressed as

δσ =

∫ t+T

t

∫
D

f + · δH(u, p) + m+ δR(u, p) dS dt

∫ t+T

t

∫
D

f + · u dS dt

. (3.8)

Equation (3.8) is valid for a generic structural perturbation; the associated
shift in the Floquet exponent can be precisely calculated once the operators δH

and δR are specified. Equation (3.8) can be simplified if we consider structural
perturbations that are localized in space. In particular, as in the work of Giannetti &
Luchini (2007), here we confine our attention to spatially localized feedback from
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force to velocity; thus the perturbation in the mass-conservation equation is not
considered (δR = 0), whereas the operator δH(u, p) is assumed to have the following
form

δH(u, p) = δ(x − x0, y − y0) C0 · u, (3.9)

where C0 is a generic constant (feedback) matrix, (x0, y0) are the coordinates of the
point where the feedback acts and, δ(x − x0, y − y0) denotes the Dirac delta function.
Such a feedback might be physically produced by introducing an infinitesimal small
device in the flow field which exerts a force on the fluid whose direction and strength
depend on the local value of the disturbance velocity. In this case, however, the
physical presence of the small device would not only act at the perturbation level
but would also produce a shift of the eigenvalue by modifying the unsteady base
flow on which the instability analysis is carried over. The Floquet multipliers, in fact,
can be influenced in two different ways: by a structural perturbation force depending
on the small velocity fluctuations alone (and therefore acting only on the linearized
equations) or by a force responding to the unsteady base flow which directly modifies
the structure of the nonlinear two-dimensional unsteady Navier–Stokes equations.
Both analyses can be performed making use of the adjoint equations and serve for
different purposes. The structural perturbation acting only on the linearized equations
is the appropriate tool to study the position of the ‘wavemaker’ and investigate the
physical nature of the instability, whereas the second analysis is more appropriate
to develop effective control strategies to suppress the instability or for a direct
comparison with the experiments. Sensitivity analyses based on a similar framework
have been used in the past to evaluate the effect of base-flow variation on the
stability properties of parallel flows (Bottaro, Corbett & Luchini 2003), boundary
layers (Zuccher, Luchini & Bottaro 2004) and bluff-body wakes (see for example
Marquet, Sipp & Jacquin 2008; Marquet et al. 2009 and Luchini, Giannetti & Pralits
2008).

In this paper, however, we are only interested in identifying the region where
the instability mechanism takes place, so that we focus on the effects of structural
perturbations acting only on the linearized equations. Substituting (3.9) in (3.8), we
obtain:

δσ =

∫ t+T

t

∫
D

f + · δ(x − x0, y − y0) C0 · u dS dt

∫ t+T

t

∫
D

f + · u dS dt

= C0 : S(x0, y0, k), (3.10)

where S is the sensitivity tensor of the Floquet mode defined as

S(x, y, k) =

∫ t+T

t

f +(x, y, k, t) u(x, y, k, t) dt

∫ t+T

t

∫
D

f + · u dS dt

. (3.11)

Note that this definition is independent of the particular feedback process (which is
defined only through the entries of the matrix C0). Thus expression (3.11) can be
used to better understand the effects of a generic force-velocity coupling which is
localized in space. Important information pertaining the feedback mechanism can
be easily retrieved by inspecting the different components of the sensitivity tensor.
A more concise way to extract information from S is to choose a norm and build
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a spatial sensitivity map by plotting at each point in space the value ||S(x, y, k)||.
Different norms can be used for this purpose, depending on the type of feedback we
are interested in. Here we use the spectral norm in order to produce a spatial map
representing the sensitivity of the Floquet exponent to a force-velocity feedback in
which the force is oriented in the worst possible direction. By looking at this map, it is
possible to locate the regions of the flow where the structural perturbation produces
the largest eigenvalue drift.

Phase information in the structural sensitivity can be recovered by considering a
structural perturbation which is impulsively applied in time at a precise phase of the
periodic base flow, corresponding to time t0

δH(u, p) = δ((t mod T ) − t0)) δ(x − x0, y − y0) C0 · u. (3.12)

In this case, the variation of the Floquet exponent σ is given by

δσ = C0 : I(x0, y0, t0, k), (3.13)

where I is the instantaneous sensitivity tensor defined by

I(x, y, t, k) =
f +(x, y, k, t)u(x, y, k, t)∫ t+T

t

∫
D

f + · u dS dt

. (3.14)

4. Results and discussion
4.1. Numerical approach

The two-dimensional incompressible Navier–Stokes equations (2.1), their linearized
version describing the evolution of the three-dimensional disturbances (2.3) and
the corresponding adjoint equations (2.11) are discretized in conservative form on
a staggered smoothly varying Cartesian mesh by using a standard second-order-
accurate finite-difference scheme. The cylinder surface is simulated by an immersed-
boundary technique that preserves the second-order accuracy of the discretization
(see Giannetti & Luchini 2007 for details). For the simulation of the two-dimensional
base flow, a constant streamwise velocity profile (U = 1, V = 0) is imposed both at
the inflow and at the side boundaries, while convective type boundary conditions
are applied on the outflow boundary (∂V /∂x = 0 and −P + 2/Re∂U/∂x = 0). For
the simulation of the linearized equations, the perturbation velocity field is assumed
to vanish at the inflow and at the side boundaries, while convective conditions are
applied on the outflow boundary (∂v/∂x = 0, ∂w/∂x = 0 and −p +2/Re ∂u/∂x = 0).
The resulting semi-discrete equations are advanced in time by the hybrid third-
order Runge–Kutta/Crank–Nicolson scheme of Rai & Moin (1991). The diffusive
terms and the pressure field are treated implicitly while the convective terms are
discretized explicitly. Thus, at each temporal sub-step, a Stokes-type operator is
solved by inverting directly the resulting linear system through the use of a sparse
LU factorization (the software package UMFPACK by Davis 2004 is used for this
purpose). Lastly, the discrete adjoint equations are obtained by taking the adjoint of
the discretized linearized equations; this is achieved in practice by deriving the adjoint
of each subroutine which compose the code for solving the LNSEs and reversing the
original calling order. In this way, the boundary conditions for the discrete adjoint
equations are automatically taken into account in the discretization. Both the direct
and the adjoint dominant Floquet modes are then numerically extracted with a
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Figure 1. Spectral norm of the tensor field S at each point of the domain for (a) mode A
(Re = 190, k = 1.585) and (b) mode B (Re = 260, k = 7.64)

classical power iteration; the equations are marched in time (the adjoint backwards
in time) until the dominant mode emerges. As a further check, the same eigenvalue
problem was also solved making use of the ARPACK library (Lehoucq, Sorensen &
Yang 1998). As expected, since we solve the adjoint of the discrete equations, the
Floquet multipliers for the direct and adjoint problems coincide to machine precision.
The results documented in the present work have been obtained using a rectangular
computational domain; the inflow, outflow and lateral boundaries are located at a
distance from the cylinder axis equal to Li = 16.5 D, Lo = 34.5 D and Lh = 11 D,
respectively. According to the convergence tests documented by Barkley & Henderson
(1996), the selected domain size leads to sufficiently accurate results for the purposes
of the present work. For instance in Barkley (2005), a work which is also dedicated to
test the sensitivity of the Floquet multipliers to the size of the computational domain,
accurate results are obtained with an even smaller domain (Li = 8 D, Lo = 25 D and
Lh = 8 D). In order to achieve a better resolution close to the cylinder surface, a
non-uniform grid is used for the computations, globally made of 600 (350) nodes in
the x (y) direction. The grid spacing in the x (y) direction varies from 1.5 · 10−2 D

(1.5 · 10−2 D) on the cylinder to 1.5 · 10−1 D (2.4 · 10−1 D) at the outflow boundary.
For the temporal discretization, a non-dimensional time step Δt U∞/D equal to 10−2

has been used, leading approximately to 510 (483) temporal steps for each shedding
cycle at Re = 190 (Re = 260).

4.2. Structural sensitivity results

Two Reynolds numbers have been considered here, i.e. Re = 190 and Re = 260, to
investigate mode A and mode B, respectively. The same couple of Reynolds numbers
was used in Barkley (2005). In order to estimate the accuracy of the results obtained
by our numerical procedure, we firstly compared the Strouhal number of the alternate
vortex shedding in the base flow (i.e. its frequency in time normalized with U ∗

∞ and D∗)
with the data available in the literature. At Re = 190 (Re = 260), a Strouhal number
St =0.1971 (St = 0.2087) has been obtained, a result in good agreement with the value
St =0.1954 (St � 0.2070), extrapolated from figure 1 in Barkley & Henderson (1996),
the percentage variation being approximately equal to 0.9 % (0.8 %). Following
Barkley & Henderson (1996), at Re = 190 (Re = 260) the Floquet analysis has been
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carried out by considering a wavenumber in the spanwise direction equal to k = 1.585
(k =7.64), corresponding to a wavelength equal to 3.96 D (0.82 D), which for the
Reynolds number considered is the most critical one for mode A (mode B). As
expected, the considered configurations are extremely close to those of marginal
stability, the resulting Floquet multiplier being equal to 1.002 (0.995). As a further
validation of the Floquet analysis, the critical Reynolds number for the instability of
Mode A (Mode B) has been searched by fixing the value of the spanwise wavenumber
to the value mentioned above. As a result, we found a critical Reynolds number for
the first appearance of Mode A (Mode B) approximately equal to Re1 � 189.77
(Re2 � 260.21), which is in agreement with Re1 = 188.5 ± 1 (Re2 = 259 ± 2) reported
by Barkley & Henderson (1996).

After that the results for the base flow and the linear stability analysis were validated
and the adjoint mode computed, the sensitivity to spatially localized feedback was
calculated by using a discretization of (3.11), which is consistent with the temporal
and spatial discretization used for the governing equations. As a first result, in figure
1, the spectral norm of the tensor field S (see (3.11)) is displayed for both Mode A
and Mode B in the flow conditions specified above. According to (3.10), a localized
structural perturbation affects the unstable modes only in those regions in which the
tensor field S is significantly non-null. A different norm for the tensor S could have
been used as well. For instance, we also tried the trace norm, and the maps obtained
did not differ significantly from the ones reported here. Moreover, the sensitivity of
the maps reported in figure 1 to variations of (a) the spanwise wavenumber (small
variations), (b) the Reynolds number (small variations), (c) the grid resolution and
(d ) the computational domain size has been verified. Because no appreciable change
of the results has been observed, we have not reported here the results of such tests
for the sake of brevity.

It is interesting to note that the sensitivity tensor S vanishes almost everywhere
except for a very localized region in the near-wake of the cylinder, for both mode
A and mode B, indicating that the ‘core’ of the three-dimensional instability is
sharply localized in space. This behaviour is similar to that which Giannetti &
Luchini (2007) observed for the first instability of the cylinder wake. In that case,
in fact, the sensitivity is localized in two lobes placed symmetrically across the
separation bubble. In order to test our numerical results and verify that only that
region where S is significantly different from zero are important for the instability
mechanism, the Floquet stability analysis has been carried out in progressively smaller
rectangular subdomains around that region. The considered base flow was always
the one computed on the whole domain, and in restricting it to subdomains, the grid
points were left unchanged in order to avoid interpolation procedures that might affect
the results. The Floquet multipliers obtained in the subdomains are then compared to
the reference ones obtained on the whole domain. The boundary conditions on each
side of the subdomains are identical to the ones adopted in the corresponding side
of the whole domain. The results of the test described above are reported for three
representative subdomains in table 1, together with the results obtained in Barkley
(2005), in which an identical experiment is carried out. Comparing the results reported
in table 1 with the maps in figure 1 (some grid lines in the figure coincide with the
boundaries of the considered subdomains in order to simplify the comparison), it is
possible to confirm that the core of the three-dimensional instability is localized in
those regions in which the tensor S is significantly different from zero. In particular,
large variations of the Floquet multiplier are obtained only when the considered
subdomain does not properly contain the region of high sensitivity shown in the
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Source Li/D Lo/D Lh/D Re k μ Δμ (%) Re k μ Δμ (%)

Present 0.6 3.0 1.5 190 1.585 0.999 −0.3 260 7.64 0.996 0.1
Present 0.6 2.5 1.5 190 1.585 0.953 −4.9 260 7.64 0.996 0.1
Present 0.6 2.0 1.0 190 1.585 0.352 −64.9 260 7.64 1.003 0.80
Present 0.6 1.3 1.0 190 1.585 1.483 48.0 260 7.64 15.237 >1000
Barkley (2005) 0.0 3.0 1.5 190 1.6 1.030 0.3 260 7.5 1.049 1.4
Barkley (2005) 0.0 2.25 1.5 190 1.6 0.914 11.6 260 7.5 1.068 3.2
Barkley (2005) 0.0 1.5 1.5 190 1.6 0.490 52.6 260 7.5 not reported >60

Table 1. Variations of the Floquet multipliers evaluated on subdomains; the reference values
for mode A (mode B) are 1.002 (0.995) for the present work and 1.034 (1.035) for Barkley
(2005); data from Barkley (2005) has been extracted from figure 2 of the referenced paper.

1.5

1.0

0.5

0

–0.5

–1.0

–1.5

0 0.5 1.0 1.5 2.0 2.5

0–0.6 0.5

0.1

1 1.5 2 2.25

Figure 2. Spectral norm of the tensor field S for mode A (k = 1.585) evaluated at Re =260.

maps of figure 1. Moreover, it is interesting to note that the maps obtained here
are also in full agreement with the results reported in Barkley (2005). In particular,
when the intermediate subdomain is used (see table 1, second last line), a significant
variation of the Floquet multiplier associated to mode A is obtained, while the
multiplier associated to mode B remains almost unchanged. This result agrees with
the fact that the sensitivity region of mode A extends approximately 0.5 D further
downstream if compared to that of mode B, as indicated by the isoline corresponding
to the value of the spectral norm of S equal to 0.1 plotted with a dotted line in
figure 1. In particular, although the norm of S in the region of maximum sensitivity
is larger for mode B than for mode A, at section x = 2.25 D the norm of S for mode
B is between two and three orders of magnitude lower than the one corresponding to
mode A.

As a general trend, for both mode A and mode B, when the Reynolds number
is increased the regions of maximum sensitivity slightly shift closer to the cylinder
surface. As an example, the sensitivity map for mode A at Re = 260 is presented in
figure 2. Comparing with the results obtained at Re = 190, we can observe that not
only the shape but also the values of the sensitivity remain essentially the same in the
range of Reynolds numbers considered.
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Figure 3. Mode A (Re = 190, k = 1.585): spectral norm of the tensor field I (grey-scale) and
vorticity field of the base flow (levels going from −4 to 4 by steps of size equal to 1, negative
contours being dashed) at (a–d ) the four subsequent phases 0, π/4, π/2 and 3π/4 among the
eight in which the vortex-shedding cycle has been equally divided. The remaining phases can
be recovered by symmetry.

The results summarized by the spatial maps in figures 1 (and 2) are obtained
by evaluating the integral in expression (3.11) over a shedding cycle and therefore
represents an average sensitivity over a period T . Although this contains sufficient
information to locate precisely the core of the instability, it is also very interesting to
visualize how the sensitivity varies in time during a vortex-shedding cycle. In order to
recover the phase information, the instantaneous sensitivity tensor (3.14) has also been
computed and its spectral norm is plotted for both mode A and mode B in figures 3
and 4, respectively. In both figures, four subsequent phases are considered among the
eight in which the vortex-shedding cycle has been equally divided. More precisely,
the pictures correspond to a phase angle of 0, π/4, π/2 and 3π/4, respectively. The
remaining phases can be easily recovered by symmetry. The comparison between
the two figures shows that the regions where the norm of I is significant for the
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Figure 4. Mode B (Re = 260, k = 7.64): spectral norm of the tensor field I (grey-scale) and
vorticity field of the base flow (levels going from −4 to 4 by steps of size equal to 1, negative
contours being dashed) at (a–d ) the four subsequent phases 0, π/4, π/2 and 3π/4 among the
eight in which the vortex-shedding cycle has been equally divided. The remaining phases can
be recovered by symmetry. In this figure, the phases of the vortex shedding have been aligned
with those reported in figure 3 for Mode A.

two unstable modes are approximately centred around the same region, i.e. the
region separating the clockwise and counterclockwise vorticities originating from the
lower and upper shear layers, respectively, although the map of mode B is definitely
more concentrated around this region. Moreover, in both cases the tensor norm is not
negligible in the vortex which is forming closest to the cylinder surface. As far as mode
B is concerned, the sensitivity map is also different from zero in the neighbourhood
of the downstream face of the cylinder. On the other hand, the map associated to
mode A is more spread out and it extends close to the separation point on the
lateral side which is opposite to the forming vortex closest to the cylinder surface.
In both cases, however, the maximum sensitivity during the vortex-shedding cycle is
reached in the regions where the maps in figure 1 show their maxima. In particular,
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looking at the sensitivity maps, it is clear that the main difference between the results
obtained for modes A and B is the location of the region of the maximum sensitivity.
In fact, while for mode A the region of maximum is located across the symmetry
line passing for the cylinder centre, for mode B the peaks are reached in two regions
symmetrically placed with respect to the line y =0, at a distance from it of about one
cylinder radius. The fact that the core of the instability for modes A and B shows
these differences might reflect the different nature of the instability mechanism which
originates them. Concerning this point, despite the large number of experimental,
theoretical and numerical investigations of the three-dimensional transition of the
cylinder wake, the precise physical nature of the secondary instabilities is not fully
understood yet and has generated much debate. Several possible mechanisms have
been proposed in the past, ranging from elliptic instabilities of the forming vortex
core for mode A (Williamson 1996a; Leweke & Williamson 1998) and hyperbolic
instabilities of the braid regions between the rollers for mode B (Williamson 1996a),
to centrifugal (Brede, Eckelmann & Rockwell 1996) or Benjamin–Feir (Leweke &
Provansal 1995) type instabilities (see for instance Thompson et al. 2001 for a more
detailed discussion). However, no rigorous or conclusive evidence was supplied to
support any of these speculations. In such context, we believe that the present
analysis could provide valuable information to gain a better understanding of the
three-dimensional transition process and could offer new interesting perspectives to
study the physical nature of the instability. In particular, the sensitivity maps described
in this section could be helpful in identifying special features of the base flow which
might be related to the spatial and temporal evolution of the instability and might
be used to develop a new approach to the problem. As an example, in the Appendix,
the existence of closed Lagrangian orbits in the wake of the cylinder is shown and
their possible link with the secondary instability is shortly discussed.

5. Conclusions
In this paper, the secondary instability of the cylinder wake is investigated by

performing a structural sensitivity analysis. To this purpose, the approach originally
proposed by Giannetti & Luchini (2007) to investigate the first instability of the
cylinder wake is generalized in order to include time-periodic base flows in the analysis.
In particular, the sensitivity of the most unstable Floquet modes with respect to a
localized force-velocity feedback is carried out. This type of structural perturbation
allows the identification of the instability core by inspecting the spatial structure
of the tensor product between the direct and the adjoint eigenfunctions associated
with the most unstable three-dimensional mode. Such quantity takes into account the
‘feedback’ which is at the origin of the self-excited oscillation and is therefore useful
to locate the region where the instability mechanism acts. Both constant-in-time and
impulsive-in-time structural perturbations have been considered. The second type of
feedback, in particular, has allowed to follow the spatial and temporal evolution of
the instability core during the different phases of the vortex shedding.

The analysis described above has been carried out for mode A (Re = 190, k = 1.585)
and mode B (Re =260, k = 7.64) by using a finite-difference code. For each case,
a sensitivity map is found which is associated to the constant-in-time structural
perturbation. The two resulting maps, which are very localized in the near-wake region,
are verified by performing stability analysis on progressively smaller subdomains
containing the core of the instability, i.e. the region in space in which the sensitivity
to the structural perturbation is significantly different from zero. As a result, the
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variations of the resulting Floquet multiplier are appreciable only when the core of
the instability is not properly included in the considered subdomain. The same type
of tests are carried out by Barkley (2005) in order to find heuristically the core of the
instability. The results of such tests are shown to be in full agreement with the maps
found in the present paper. Analogous maps are found as a function of the phase of
the vortex shedding when an impulsive-in-time structural perturbation is considered.
In this way, the time evolution of the instability core has been uncovered and
differences in the behaviour of mode A and mode B discussed. Such results might be
very useful to gain a better understanding of the three-dimensional transition process
and could offer new perspectives (see the Appendix) to study the physical nature of
the instability, which is not completely understood yet.

We conclude by highlighting that the strategy proposed here to localize the
secondary instability arising in the wake of a circular cylinder is a general approach
and can be used to study a generic linear global instability superposed to a generic
time-periodic base flow.

Appendix. Closed Lagrangian trajectories
The analysis performed in the present paper shows that the core of the secondary

instability, for both mode A and mode B, is highly localized in space. A similar result
was also observed by Giannetti & Luchini (2007) and Luchini et al. (2008) for the first
instability of the cylinder wake. In that case, in fact, the core of the global instability
(the ‘wavemaker’) is located in a region placed in the rear part of the separation
bubble and approximately confined in the streamwise direction by the positions of
the centres of the two counter-rotating vortices and the re-attachment point of the
wake bubble. Such points are equilibrium points (or critical points) of the dynamical
system

dX(t)

dt
= Ub(X(t), t), (A 1)

describing the position X of a Lagrangian particle convected by the base flow Ub.
For Re larger than 47, the wake becomes globally unstable and a periodic vortex
shedding sets in. In these conditions, no equilibrium points of (A 1) can be found.
However, since the base flow is now periodic, there might exist particular Lagrangian
points which evolve along closed orbits and return to their initial position after one
period T . Such solutions are fixed points of the first ‘return map’ (or Poincaré map)
associated with a specific phase of the shedding cycle. The closed orbits described
by these Lagrangian particles can be thought of as a generalization of the three
equilibrium points existing in the wake of the cylinder at low Reynolds numbers.
As for the first instability, it seems therefore interesting to check if the core of the
secondary instability evolves in times following the movement of these points or,
more generally, if a visual correlation can be found between the regions of highest
sensitivity and the closed Lagrangian orbits.

From a mathematical point of view, these closed path lines are the solutions of the
ordinary differential equation (A 1) subject to the periodicity requirement

X(t + T ) = X(t). (A 2)

By numerically solving (A 1) and (A 2) with a fourth-order Runge–Kutta scheme
coupled to a Newton–Raphson procedure, we were able to find three closed
Lagrangian trajectories in the periodic wake of the circular cylinder. To our
knowledge, this is the first time that such orbits have been displayed. For sake



334 F. Giannetti, S. Camarri and P. Luchini

0.8

0.6

0.4

0.2

0

0.5

0 0.5 1.0 1.5 2.0 2.5 0 0.5 1.0 1.5 2.0 2.5 0 0.5 1.0 1.5 2.0 2.5

1.0 1.5 2.0

–0.2

–0.4

–0.8

–0.6

0.8

0.6

0.4

0.2

0

0.5 1.0 1.5 2.0

–0.2

–0.4

–0.8

–0.6

0.8

0.6

0.4

0.2

0

0.5 1.0 1.5 2.0

–0.2

–0.4

–0.8

–0.6

0.8

0.6

0.4

0.2

0

0.5

0 0.5 1.0 1.5 2.0 2.5 0 0.5 1.0 1.5 2.0 2.5 0 0.5 1.0 1.5 2.0 2.5

1.0 1.5 2.0

–0.2

–0.4

–0.8

–0.6

0.8

0.6

0.4

0.2

0

0.5 1.0 1.5 2.0

–0.2

–0.4

–0.8

–0.6

0.8

0.6

0.4

0.2

0

0.5 1.0 1.5 2.0

–0.2

–0.4

–0.8

–0.6

(a) (b) (c)

(d) (e) (f)

Figure 5. Closed Lagrangian trajectories of the periodic base flow at Re = 190: the movement
of the points (small circles) along the closed orbits (black lines) is shown for (a–f ) the six
phases (0, π/3, 2π/3, π, 4π/3 and 5π/3) in which the vortex-shedding cycle has been equally
divided. The spectral norm of the sensitivity tensor I(x, y, t) for mode A at k = 1.585) is also
superposed in order to show the strong correlation existing among the orbits and the regions
of instantaneous maximum sensitivity.

of precision, we have to say that orbits that close after more than one period may
also exist, but we did not look for them, since they do not have the same periodicity
as the unstable global modes.

Among the three closed orbits that we were able to find numerically, one is
symmetric and the other two are symmetrically located with respect to y = 0. It is
interesting to note that all the closed orbits are enclosed in the region of maximum
sensitivity of modes A and B as given in figure 1. The movement of the material
points (little circles) along the closed orbits (black line) during a whole shedding cycle
is shown in figures 5 and 6, respectively, for Re =190 and Re =260. In both cases,
the entire period has been divided into 6 equal intervals. In order to better show the
correlation existing between the instantaneous position of the corresponding material
points and the instability core, the spectral norm of the instantaneous sensitivity
tensor I(x, y, t) is superposed to the closed trajectories. For both mode A and mode
B, the high sensitivity regions strictly follow the movement of the material points
along the orbits. This is probably more evident for mode B, which is characterized
by a larger wavenumber k and is obtained for a larger Reynolds number.

These results suggest that it might be possible to describe the spatio-temporal
evolution of the instability through a ‘local theory’. A possibility in this sense could
be offered by the inviscid short-wavelength approximation developed by Lifschitz &
Hameiri (1991). A similar framework has been used to study both elliptic, hyperbolic



Structural sensitivity of the secondary instability of the cylinder wake 335

0.8

0.6

0.4

0.2

0

0.5

0 0.5 1.0 1.5 2.0 2.5 3.03.5 4.0 4.5

1.0 1.5 2.0

–0.2

–0.4

–0.8

–0.6

(a)

0.8

0.6

0.4

0.2

0

0.5

0 0.5 1.0 1.5 2.0 2.5 3.03.5 4.0 4.5

1.0 1.5 2.0

–0.2

–0.4

–0.8

–0.6

(b)

0.8

0.6

0.4

0.2

0

0.5

0 0.5 1.0 1.5 2.0 2.5 3.03.5 4.0 4.5

1.0 1.5 2.0

–0.2

–0.4

–0.8

–0.6

(c)

0.8

0.6

0.4

0.2

0

0.5

0 0.5 1.0 1.5 2.0 2.5 3.03.5 4.0 4.5

1.0 1.5 2.0

–0.2

–0.4

–0.8

–0.6

(d)

0.8

0.6

0.4

0.2

0

0.5

0 0.5 1.0 1.5 2.0 2.5 3.03.5 4.0 4.5

1.0 1.5 2.0

–0.2

–0.4

–0.8

–0.6

(e)

0.8

0.6

0.4

0.2

0

0.5

0 0.5 1.0 1.5 2.0 2.5 3.03.5 4.0 4.5

1.0 1.5 2.0

–0.2

–0.4

–0.8

–0.6

(f)

Figure 6. Closed Lagrangian trajectories of the periodic base flow at Re = 260: the movement
of the points (small circles) along the closed orbits (black lines) is shown for (a–f ) the six
phases (0, π/3, 2π/3, π, 4π/3 and 5π/3) in which the vortex -shedding cycle has been equally
divided. The spectral norm of the sensitivity tensor I(x, y, t) for mode B at k = 7.64) is also
superposed in order to show the strong correlation existing among the orbits and the regions
of instantaneous maximum sensitivity.

and centrifugal instabilities arising on top of stationary two-dimensional flows (see
for instance Bayly 1988; Friedlander & Vishik 1991; Leblanc & Cambon 1998;
Sipp & Jacquin 1998; Sipp, Lauga & Jacquin 1999 and Caulfield & Kerswell 2000).
According to this theory, the solution of the LNSEs is sought in the form of a
rapidly oscillating and localized wave packet. At leading order, for vanishing viscosity
(Re → 0) and large wavenumbers (k → ∞), short wavelength instabilities propagate
along Lagrangian trajectories. In such context, a special role can be ascribed to
the closed Lagrangian trajectories previously described. On such orbits, in fact, the
instability wave can feed back on itself giving rise to a self-excited oscillation.

A preliminary application of this theory along the three closed orbits has shown
that the periodic flow in the wake of the cylinder is highly unstable with respect
to short-wavelength perturbations. However, no quantitative agreement between the
growth rates predicted by the asymptotic theory and those obtained by the global
stability analysis has been found yet. Considering that for the cylinder wake the
value of Re is only moderately large and that the values of k corresponding to the
maximum amplification for both mode A and mode B are only slightly larger than
one, it is clear that both finite Reynolds number and finite wavenumber effects might
make a significant contribution to the global growth rate and therefore should be
included in a quantitative and rigorous analysis. Furthermore, the theory should also



336 F. Giannetti, S. Camarri and P. Luchini

provide a way to build the spatial structure of the global mode starting from the local
approximation along the orbits.

Landman & Saffman (1987) showed how to introduce in the leading order equations
a term accounting for a viscous correction. Bayly (1988), on the other hand, showed
that in the context of two-dimensional steady flows with closed streamlines, it is
possible to build an inviscid global mode of finite wavenumber in the proximity of
the most unstable orbit. For the cylinder case, however, a ‘local theory’ accounting
for finite wavenumber effects and relating the characteristics of the Lagrangian orbits
and the global behaviour of the self-sustained instability is still lacking (if any will
ever be possible). At the present stage of development, thus, it is difficult to say
something conclusive about the possibility to describe the instability by using a local
approach and further investigations are necessary to clarify this point. In any case,
there is a spatial resemblance between the sensitivity maps and the closed orbits
which might lead to a future interpretation of the instability mechanism even if the
short wavelength theory should turn out to be inapplicable.
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